EE105 – Fall 2015 Microelectronic Devices and Circuits Current Sources

Prof. Ming C. Wu

wu@eecs.berkeley.edu

511 Sutardja Dai Hall (SDH)

Load Impedance

- To achieve high gain (or low attenuation in the case of a source follower), it is very desirable to achieve high load impedance, Z_L
 - Unfortunately, using a simple resistor of high value has issues
 - What are these issues?

Source

Issue: Headroom Limitations

Common Source

The bias current of the device is a direct function of R_L

$$I_d = rac{V_{dd} - V_{ds}}{R_L}$$

- V_{dd} is < 3.6V for most modern CMOS processes</p>
- V_{ds} must be greater than ∆V to maintain device saturation

Large R_L implies small I_d (implies small g_m , poor frequency response, etc.)

Achieving High Gain

- Replacement of resistor load with a current source yields the highest possible DC gain out of the amplifier
 - Current source determines I_d of device
- We can make current sources out of transistors
 - Generally smaller area than polysilicon resistors

What is the small signal gain of the above circuit?

Diode Connected Device

- How do we build current sources?
- · Let's start with a "diode connected" device
- A MOS device with gate and drain shorted operates like a diode (but not exponential)

Diode Connected -- SS Model

- We can derive the small-signal model by shorting out the hybrid-pi model
- Note that a Gm generator with it's controlling terminals connected to the Gm is more simply a ...?

The Integrated "Current Mirror"

- M₁ and M₂ have the same
 V_{GS}
- If we neglect CLM (λ=0), then the drain currents are equal
- Since λ is small, the currents will nearly mirror one another even if V_{out} is not equal to V_{GS1}
- We say that the current I_{REF} is mirrored into i_{OUT}
- Notice that the mirror works for small and large signals!

Multiplication Ratio

Current Mirror as Current Source

- The output current of M_2 is only weakly dependent on v_{OUT} due to high output resistance of FET
- M2 acts like a current source to the rest of the circuit
- For good current source behavior, what is the minimum v_{out}?

Small-Signal Resistance of *I***-Source**

Improved Current Sources

Goal: increase $R_{o(ut)}$

Approach: look at amplifier output resistance

results ... to see topologies that boost resistance

Effect of Source Degeneration

- Equivalent resistance loading gate is dominated by the diode resistance ... assume this is a small impedance
- Output impedance is boosted by factor $(1 + g_m R_s)$

Improved Current Sources

How would you scale the output current?

Cascode (or Stacked) Current Source

Drawback of Cascode I-Source

What is the minimum output voltage to keep all

Drawback of Cascode I-Source

Minimum output voltage to keep both transistors in saturation:

$$V_{OUT,MIN} = V_{DS4,MIN} + V_{DS2,MIN}$$

$$V_{DS2,MIN} > V_{GS2} - V_{T0} = V_{DSAT2}$$

$$I_{in} \bigcirc V_{D4} > V_{DSAT2} + V_{GS4} = V_{GS2} + V_{GS4} - V_{T0}$$

$$V_{OUT,MIN} = V_{GS2} + V_{GS4} - V_{T0}$$

In EE140 you will learn circuit tricks to overcome this problem!

Current Sinks and Sources

Sink: output current goes to ground

Current Mirrors

Idea: we only need one reference current to set up all the current sources and sinks needed for a multistage amplifier.

Example: Common-Drain Amplifier

Common Drain AC Schematic

How does a REAL current source fit in to the small-signal model?

CD Voltage Gain With Real I-Source

11-21

CD Voltage Gain (Cont.)

